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Abstract

Imported agricultural pests can cause substantial damage to agriculture, food security, and

ecosystems. In the United States, the Agricultural Quarantine Inspection Monitoring (AQIM)

program conducts random sampling to estimate the probabilities that cargo and passengers

arriving at ports of entry carry pests. Assessing these risks accurately is critical to enable ef-

fective policies and operational procedures. In this paper, we formulate an optimization model

that minimizes the mean squared error of the probability estimates that AQIM obtains. The

central decision-making tradeoff that the model explores is whether it is preferable to sample

more arriving containers (and fewer boxes per container) or more boxes per container (and fewer

containers), given limited resources. We first derive an analytical solution for the optimal sam-

pling strategy by leveraging several approximations. Then, we apply our model to a numerical

case study of maritime cargo sampling at the Port of Long Beach. We find that, across a wide

range of parameter settings, the optimal strategy samples more containers (but fewer boxes per

container) than the current AQIM protocol. The difference between the two strategies and the

accuracy improvement with the optimal approach are larger if the pest statuses of boxes in the

same container are more strongly correlated.
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1 Introduction

The high-volume international flow of goods and people that characterize the modern global econ-

omy heightens the risks of importing agricultural pests and diseases across national borders. Once

established within a country, these pests can cause significant damage to agriculture, food security,

and ecosystems. The Food and Agriculture Organization (2021) recently indicated that invasive

pests and diseases account for approximately 40% of annual global crop losses, inflicting a direct

economic impact exceeding $220 billion, underscoring the urgent need for effective cross-border pest

control measures to safeguard international trade, biodiversity, and public health. The occurrence of

African Swine Fever (ASF) outbreaks in Asia, as documented by Gale, Kee, and Huang (2023), has

led to the loss of millions of pigs and substantial disruptions in the pork industry. Illustratively, the

swift expansion of the Fall Armyworm in Africa and Asia constitutes a significant menace to cereal

crops and the livelihoods of numerous smallholder farmers, as highlighted by Makgoba, Tshikhudo,

Nnzeru, and Makhado (2021). Within the United States (U.S.), apprehensions about honey produc-

tion and pollination services have surged due to a 40% reduction in bee populations attributed to

Colony Collapse Disorder and Varroa mite infestations, as indicated in a report from the National

Honey Bee Health Stakeholder Conference Steering Committee (2012).

In the U.S., the Plant Protection and Quarantine (PPQ) division of the U.S. Department of Agri-

culture (USDA) is tasked with safeguarding the nation’s agriculture and natural resources. PPQ

partners with Customs and Border Protection (CBP) to administer and carry out the Agricultural

Quarantine Inspection (AQI) program. AQI performs targeted inspections of cargo and people en-

tering the U.S. at ports of entry (POEs) in order to detect agricultural pests and diseases and prevent

them from being imported. While AQI’s goal is to detect pests, it must pursue this mission with

limited inspection resources and while facilitating international trade. This is a careful balancing

act that makes it important for AQI to have reliable information about the rates of pest arrivals via

various pathways for deciding where and what to focus its inspections on.

The Agricultural Quarantine Inspection Monitoring (AQIM) program is responsible for providing

this information to AQI, as outlined in the Agricultural Quarantine Inspection Monitoring (AQIM)

Handbook (U.S. Department of Agriculture, 2021). While AQI’s mission is to mitigate risk through

inspections targeted as intelligently as possible, AQIM’s mission is to assess risk by conducting

random sampling of cargo and people arriving at U.S. POEs. Random sampling allows AQIM to

estimate the probability that a unit of a particular commodity arriving at a given POE contains an

actionable pest. These probability estimates inform how AQI deploys its inspection resources for

risk mitigation and allow the U.S. government to evaluate the performance of AQI by examining

the disparity between estimated and intercepted pest arrivals.

Two illustrative examples demonstrate the considerable value of AQIM data for enhancing poli-

cies and operations designed to counter the agricultural pest threat. The first example concerns the

recent African Swine Fever outbreak in the Caribbean (U.S. Department of Agriculture, 2019). Dur-

ing this outbreak, data from AQIM regarding passenger traffic passing through Puerto Rico en route

to the U.S. mainland facilitated a comprehensive analysis. This analysis focused on the encountered

products, the prevalence of incoming passengers carrying items of concern, and their countries of
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origin. This information obtained by AQIM resulted in PPQ modifying passenger inspection rates in

its predeparture inspection program. Second, in evaluating the feasibility of implementing a passen-

ger preclearance initiative, particularly in terms of agricultural pest concerns, in a Southeast Asian

country, PPQ relied on AQIM data (Animal and Plant Health Inspection Service, 2017). Examina-

tion of AQIM data revealed a significant risk level, culminating in the decision that the proposed

preclearance program was not viable.

The random sampling protocol currently employed by AQIM, and defined in its handbook (U.S.

Department of Agriculture, 2021), specifies a certain number of containers to inspect each week

for each commodity class at each POE. Ultimately, AQIM reports the fraction of these sampled

containers in which it finds an actionable pest as its probability estimate for that commodity class

and POE. It is important to note that AQIM inspectors do not inspect all boxes that are inside a

sampled container. Instead, AQIM follows a “hypergeometric” table that indicates how many boxes

to inspect based on the total number of boxes in the container. We will describe this current AQIM

protocol in detail in Section 3. Importantly, we note that the current division of inspection resources

between containers and boxes is not tied to any mathematical notion of optimal resource allocation.

Perhaps more accurate probability estimates could be obtained by sampling more containers but

fewer boxes per container, or vice versa. This is the central strategy decision that we focus on in

this paper.

To investigate this strategy decision and optimize the AQIM random sampling approach, we

formulate an optimal resource allocation model that minimizes the mean squared error (MSE) of

the pest probability estimate. The model decides how many containers to sample and how many

boxes to inspect per sampled container, subject to a budget constraint. The budget constraint can

be specified as a maximum number of boxes that can be inspected or expanded to incorporate a

fixed cost for sampling a container. By introducing several approximations, we are able to derive

an analytical solution for the optimal sampling strategy. Following this theoretical analysis, we

parameterize a numerical case study based on data from the Port of Long Beach maritime POE. For

this case study, we present optimal solutions, conduct sensitivity analysis on input parameters that

are difficult to assign values to using empirical data, and compare the performance of our model’s

optimal sampling strategy to that of the current AQIM protocol.

Our main findings can be succinctly summarized as follows:

1. The optimal sampling strategies derived from our model tend to sample more containers, but

inspect fewer boxes per sampled container, than the current AQIM protocol. This difference

is quite robust to variations in parameter settings.

2. The optimal sampling strategies typically produce probability estimates with substantially

lower MSEs than the current AQIM protocol.

3. The differences between the optimal sampling strategy and the current AQIM protocol, in

terms of strategy and performance, are greater when the correlation between the pest statuses

of boxes in the same container is higher.

While our analysis was inspired by the AQIM application and we describe the model using lan-
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guage tailored to its context, we emphasize that our model and analysis are actually quite general.

They could certainly apply to other applications of two-level random sampling for probability es-

timation, with two levels that are analogous to the containers and boxes in the AQIM case. For

example, in quality control, a manufacturer may want to estimate the probability that a shipment

contains a defective unit, in which case it could randomly sample a certain number of shipments

and inspect some number of units per shipment. The findings and insights that we uncover in this

paper would be relevant to this other application, with shipments analogous to containers and units

analogous to boxes.

The remainder of this paper is structured as follows. We review the most relevant literature in

Section 2, then provide technical background on the current AQIM protocol in Section 3. Section 4

presents our optimization model, which we analyze theoretically in Section 5. We outline our Port of

Long Beach case study in Section 6 and then present and discuss results for it in Section 7. Section

8 concludes with a summary of our most important findings and future research directions.

2 Literature Review

In this section, we review three branches of literature that are relevant to our work along differ-

ent dimensions: (1) optimal inspection strategies for national security, (2) operations research for

invasive species management, and (3) sampling.

2.1 Optimal Inspection Strategies for National Security

Numerous studies have analyzed optimal inspection strategies for various national security applica-

tions. In the area of agricultural pest inspections, Chen, Epanchin-Niell, and Haight (2018) formulate

a model that minimizes the expected cost of pest importations by choosing how many units to sample

from each lot. They apply this model to a case study based on plant shipments imported from Costa

Rica to Miami. Trouvé and Robinson (2024) similarly investigate the optimal allocation of sampling

effort, but their model incorporates the overdispersion phenomenon whereby different consignments

within the same pathway exhibit varying pest infestation rates. They demonstrate how considering

overdispersion as well as other features of the pest arrival process when determining the inspection

strategy can substantially reduce propagule pressure. It is important to note that both Chen et

al. (2018) and Trouvé and Robinson (2024) optimize sampling strategies in order to minimize pest

importations and their impacts (consistent with the goal of AQI inspections), with infestation rates

included in their models as input parameters. By contrast, in this paper, we optimize decisions

about how to randomly sample cargo in order to estimate infestation rates as accurately as possible

(consistent with the goal of AQIM inspections).

Batabyal and Beladi (2006) investigate optimal resource allocation decisions for preventing bi-

ological invasions that occur via international trade by conducting a queueing-theoretic analysis.

Employing queueing theory, the authors analyze the prevention problem from a long-term perspec-

tive, characterizing regulatory regimes as distinct queues. They formulate a publicly owned port

manager’s decision problem as an optimization challenge using queuing-theoretic techniques. The
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study compares and contrasts optimality conditions of different inspection regimes. Building on the

foundational work by Batabyal and Beladi (2006), Yamamura, Katsumata, Yoshioka, Yuda, and

Kasugai (2016) extend this line of inquiry by elucidating various statistical theories incorporated

into Japan’s import plant quarantine systems. These encompass import inspections, early detection

procedures, and emergency control. The authors illustrate these theories through real instances of

quarantine measures adopted against the infiltration of plum pox virus disease and citrus huanglong-

bing. A key finding underscored by the authors is the critical significance of implementing suitable

import quarantine systems to avert the inadvertent introduction of invasive alien pests.

Beyond cross-border pest control, optimal inspection strategies in other national security contexts

have garnered attention from researchers. Bagchi and Paul (2014) investigate how changes in intelli-

gence gathering impact potential terrorists’ behavior and airport security. It suggests that increasing

intelligence spending may raise the likelihood of attacks by highly motivated terrorists but decrease

the chances of attacks by less motivated ones. Additionally, higher intelligence spending leads to

shorter airport security lines, reducing congestion issues. The paper also highlights that lowering

the cost of screening unequivocally improves overall social welfare. Techniques that make screen-

ing more cost-effective can enhance social welfare without necessarily cutting intelligence spending.

Moreover, Clauset and Woodard (2013) present a statistical algorithm for estimating the probability

of large terrorist events, like the 9/11 attacks, using semi-parametric models and a nonparametric

bootstrap. The algorithm is also employed for a data-driven statistical forecast of a similar event in

the next decade. Accurate probabilities for significant terrorist events contribute valuable insights

for global risk assessment, guiding long-term planning and response efforts. Jacobson, Kobza, and

Nakayama (2000) introduce a non-intrusive sampling method, utilizing the observed numbers of

alarms and clears in security-system operations, to estimate the probabilities of threat, false alarm,

and false clear in access-control security systems. The derived estimators offer a means to assess the

performance of such systems. Additionally, the paper delves into the sampling procedure employed

for estimating threat and false alarm probabilities, along with the probability of a false clear. It

establishes convergence properties and confidence intervals for these estimators, and an illustrative

example is provided to showcase their utility.

Container inspections for addressing other threats at ports also play a pivotal role in optimal

inspection strategies. Bakshi, Flynn, and Gans (2011) examine the operational impact of container

inspections at international ports, and their paper specifically focuses on the tradeoff between the

security derived from inspections and the resulting congestion in the system. The study recognizes

the vulnerability of the U.S. to maritime terrorism, highlighting the potential for terrorists to conceal

nuclear devices within shipping containers, thereby causing widespread disruption to global supply

chains.

2.2 Invasive Species Management and Operations Research

The field of invasive species management has seen significant contributions from operations research

methodologies. Büyüktahtakın and Haight (2018) conduct a comprehensive review of operations

research models in invasive species management, emphasizing the need for efficient decision tools
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to prioritize actions and minimize adverse impacts. They illustrate various biological and economic

aspects of invasive species management by introducing a spatio-temporal optimization model. The

paper categorizes relevant literature based on modeling methods, critically examines existing re-

search, identifies limitations, and proposes directions for further exploration in optimizing invasive

species management planning.

One crucial aspect of optimization models in invasive species management is the formulation of

control models. The optimization problem within these models revolves around the efficient alloca-

tion of resources among various control activities, with the overarching goal of minimizing invasion

damage over time, adhering to a designated control budget, and considering the biological dynamics

of the invader. To tackle this dynamic optimization problem, researchers employ various approaches,

including dynamic programming (DP), mathematical programming, and optimal control. For in-

stance, Billionnet (2013) describes the application of mathematical programming to support decision

makers in safeguarding biodiversity. The study presents compelling examples of optimization prob-

lems linked to conservation planning, such as the careful selection of nature reserves, effective control

of landscape fragmentation, ecologically sustainable forest utilization, combating invasive species,

and preserving genetic diversity. To address the complexity of controlling invasive species, Kıbış and

Büyüktahtakın (2017) introduce a mixed-integer programming (MIP) model designed for control-

ling sericea infestation, demonstrating its applicability through a case study. Solving the problem

as a full dynamic optimization model, the MIP model outperforms its mixed-integer nonlinear pro-

gramming (MINLP) equivalent and nonlinear programming (NLP) relaxation in solution quality. A

comparison of five linearization methods reveals that the proposed approach consistently produces

higher-quality solutions. Incorporating binary treatment decisions, dispersal factors, and probabil-

ities, the model linearizes nonlinear aspects, providing computational solvability for practical-sized

invasive species management problems. Examining the national-scale economic impact of terrestrial

invasive species, Olson (2006) provides a comprehensive review of recent studies on the economics

of invasive species management. It examines the economic literature concerning the control and

prevention of biological invasions, as well as literature on international trade and trade policy re-

garding invasive species. Additionally, the paper provides an overview of selected studies focusing

on terrestrial invasive plants, animals, and microbes.

In the realm of invasive species management, an array of prevention strategies, beyond bor-

der inspections, has garnered attention. These comprehensive measures include quarantines and

formidable barriers strategically deployed to prevent the emigration of invasive species from their

established populations. Optimization studies explore the establishment of barrier zones, contain-

ment, quarantine of existing populations, and preemptive removal of hosts to minimize damages

and control costs. Epanchin-Niell and Wilen (2012) introduce a bioeconomic model for bioinvasions,

considering spatial-dynamic processes and explicitly addressing spatial aspects. It explores opti-

mal control policies based on bioeconomic parameters, spatial configurations, and initial invasion

types. The geometry of the initial invasion and landscape influences optimal policies, which may

involve leveraging landscape features or altering the invasion shape to minimize costs. Notably,

these policies exhibit forward-looking behavior, aiming to slow and redirect the invasion away from

areas with high potential damages or toward areas with low control costs. Sharov and Liebhold
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(1998) demonstrate the effective use of barrier zones to slow the spread of the gypsy moth popula-

tion, resulting in a significant reduction in its advancement rate. Furthermore, Moore et al. (2010)

provide a comprehensive review of classical biological control programs, emphasizing the need for

more projects to combat the increasing number of invasive species worldwide. Their categorization

of projects into complete control, partial control, and ongoing initiatives highlights the significance

of preserving biodiversity, products, and ecosystem services. Lastly, Kovacs, Haight, Mercader, and

McCullough (2014) contribute a multidimensional perspective by exploring bioeconomic analyses in

the context of an emerald ash borer invasion in an urban forest with multiple jurisdictions. They

emphasize the importance of efficient resource allocation strategies to limit the impact of invasive

species, particularly in scenarios with imperfect information about local payoffs and the intricate

relationship between native species and timber harvesting. The primary focus is on maximizing the

net benefits of ash trees while considering the impact of emerald ash borer infestation. The paper

addresses the optimality of removing and replacing ash trees, suggesting that all affected trees should

be removed if they are at risk of being killed by the emerald ash borer.

2.3 Sampling

The AQIM sampling protocol, which we will describe in detail in Section 3, has elements in common

with several classical sampling methods including cluster sampling, stratified sampling, and two-

stage sampling. In this subsection, we briefly summarize each of these sampling designs and clarify

how the AQIM procedure is similar to, and different from, each of them. Then, we highlight several

papers that specifically pertain to sampling for agricultural pests.

As discussed by Thompson (2012), cluster sampling involves dividing a population into clusters

and randomly selecting some of these clusters to include all members within them in the sample.

An extension of cluster sampling is two-stage cluster sampling, where a sample of secondary units

is selected from each of the previously selected primary units. The AQIM sampling protocol is

similar to two-stage cluster sampling in that containers are randomly sampled in the first stage,

and then boxes from each selected container are randomly sampled in the second stage. Another

sampling method that is relevant to AQIM is stratified sampling, where the population is divided

into distinct non-overlapping groups called strata, and a sample is chosen from each stratum using

a specific design. In stratified random sampling, the entire sample frame is partitioned into separate

subgroups, and a simple random sample is independently taken within each subgroup. In the AQIM

application, the pathways defined by different POE-commodity type combinations can be viewed as

strata created by dividing the overall universe of arriving cargo and passengers along these lines.

A major difference between the AQIM sampling protocol and two-stage cluster sampling is that,

in the AQIM application, the ultimate goal is to estimate the pest probability at the primary

unit (container) level instead of at the secondary unit (box) level. By contrast, in two-stage cluster

sampling, the definition and selection of clusters is generally a means to an end, a way to conveniently

sample the whole population of secondary units in order to estimate probabilities at the secondary

unit level. Similarly, AQIM procedures differ from classical stratified sampling in that, once the

AQIM strata are defined, sampling and probability estimation take place independently in each
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stratum to derive stratum-level results for each pathway (POE-commodity type combination). In

classical stratified sampling, the goal is usually to combine stratum-level sampling results to estimate

a single probability for the entire population.

In terms of sampling for agricultural pests, several papers in the literature explore how to estimate

the underlying parameters of pest arrival processes based on observed inspection results. Trouvé

and Robinson (2021) provide evidence showing that overdispersion is a common feature of pest

infestation rates across consignments from the same pathway. As a result, estimating the infestation

rate using binary data on inspection outcomes (without information on how many units failed an

inspection) without accounting for overdispersion will tend to underestimate pest threats, because

the binary inspection data are right-censored. Montgomery, Petras, Takeuchi, and Katsar (2023)

introduce Pest or Pathogen Spread (PoPS), an open-source simulation platform for pest arrivals

and inspections. As they demonstrate, this simulator has a number of potential uses. One use is to

estimate the true pest infestation rate and other underlying parameters of pest arrival processes, as

the simulation parameters can be adjusted until the simulated inspection results roughly match the

empirical inspection data collected in the real world. PoPS can also be used to simulate the effects

of different inspection strategies and quantify tradeoffs between inspection effort and effectiveness.

Kim, Hong, Egger, Katsar, and Griffin (2019) propose and test methods for assigning categorical

risk scores to commodity-country combinations based on pest inspection results. They account for

both the estimated pest interception rates and their confidence intervals, and find that a generalized

linear mixed effects model performs well at prediction. In contrast to our work, none of these papers

explicitly optimizes the sampling strategy with respect to an objective, and none of them considers

the budget allocation tradeoff between sampling more containers versus inspecting more boxes per

container.

3 Technical Background: Current AQIM Sampling Protocol

In this section, we describe the current sampling protocol employed by AQIM and outlined in

its handbook (U.S. Department of Agriculture, 2021). It is important to understand how AQIM

sampling currently takes place in order to establish the notions of a container, a box, and a sampling

strategy that are embedded in our model in Section 4. Furthermore, we will eventually compare our

optimal sampling strategies and their performance to those of the current AQIM protocol.

For a detailed explanation of the current AQIM sampling protocol, consider maritime cargo as

an example pathway. Figure 1 provides a visual overview of how AQIM random sampling currently

functions at a maritime cargo POE. AQIM first categorizes the entire universe of cargo arriving

at this POE into three subgroups: Commercial Perishable Agricultural Cargo (e.g., fresh fruit,

vegetables, cut flowers), Wood Packaging Material, and Italian Tile. For each subgroup, the AQIM

Handbook dictates that AQIM randomly inspect two containers per week (eight per four-week period

or “month”) at each POE. Ultimately, the container-level probability estimates that AQIM reports

will be specific to the POE and subgroup (e.g., Commercial Perishable Agricultural Cargo arriving at

the Port of Seattle). The AQIM manager on site has some discretion for deciding how to randomly

select containers to sample, but a common method is to generate random inspection times and
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Figure 1: Illustration of the current AQIM sampling protocol.

sample the next container that arrives after each time.

Once AQIM randomly chooses a container to sample, the next step is to randomly select some

boxes from the container to inspect for pests. The underlying logic for not inspecting every box

in a container is that containers often carry many boxes, and inspecting all of them would be

very resource-intensive while not necessarily being that much more effective at detecting pests than

inspecting a subset of them. The precise number of boxes that AQIM inspects is based on the

total number of boxes in the container, as prescribed in Table 1 from the AQIM Handbook (U.S.

Department of Agriculture, 2021). The numbers prescribed in the table were calculated to ensure

that, if 10% of boxes in a container carry a pest, then inspecting the given number of boxes will result

in at least a 95% probability of detecting a pest in at least one inspected box. Since the number of

inspected boxes that contain a pest is a random variable that follows a hypergeometric distribution

(which describes sampling without replacement), AQIM refers to Table 1 as the hypergeometric table,

and the process of randomly selecting boxes to inspect as hypergeometric sampling. During our site

visits to the Port of Long Beach maritime cargo POE and Los Angeles International Airport air

cargo POE, our conversations with AQIM managers and observations of inspections confirmed that

AQIM personnel adhere to the AQIM Handbook’s guidelines very closely.
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Table 1: The hypergeometric table from the AQIM Handbook that specifies how many boxes from
a container to inspect.

Total number of boxes Number of boxes to sample

1-10 All boxes in the shipment

11-12 11

13 12

14-15 13

16-17 14

18-19 15

20-22 16

23-25 17

26-28 18

29-32 19

33-38 20

39-44 21

45-53 22

54-65 23

66-82 24

83-108 25

109-157 26

158-271 27

272-885 28

886 and up 29

Before proceeding, we emphasize that the current AQIM protocol is not tied to any notion of

optimal resource allocation that would estimate pest probabilities as accurately as possible given the

available inspection resources. The determination of the number of containers that AQIM samples

lacks mathematical underpinnings. Rather, it is based on an intuitive assessment of the available

inspection resources and the desire to avoid disrupting trade to an unwarranted degree. While

the hypergeometric sampling of boxes is grounded in probability concepts, the 10% box infestation

assumption and targeted 95% confidence level for detection are essentially arbitrary. Without an

in-depth analysis, it is unclear whether 95% is the “right” confidence level to aim for in order to

obtain the most accurate container-level pest probability estimates. Perhaps it would be better to

reduce this confidence level in order to spread box inspections out over a larger sample of containers,

or to increase it by inspecting more boxes per container even if it means sampling fewer containers.

This is the central strategy decision that our model presented in the next section is formulated to

analyze.
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4 Model Description and Formulations

In this section, we present our optimization model and describe its basic structure and assumptions.

Then, in the next section, we analyze it in order to derive an analytical solution for the optimal

AQIM sampling strategy (with the help of some approximations that make the problem analytically

tractable). Table 3 summarizes the nomenclature that we introduce in this section and use in our

model formulations and subsequent analysis.

From a decision-making standpoint, we assume that AQIM’s objective is to obtain the most

accurate estimate of the probability that a container in a given subgroup (e.g., commercial perishable

agricultural cargo) arriving at a given POE (e.g., Port of Long Beach) carries an actionable pest.

First, let p represent the true probability that such a container carries a pest. Note that p is a

parameter with a fixed value, but one that is unknown from AQIM’s perspective; after all, p is what

AQIM is trying to estimate. Now, let p̂ denote the (container-level) estimate of the pest probability

that AQIM obtains via its random sampling. Specifically, AQIM will report as its estimate p̂ the

number of sampled containers in which it finds a pest divided by the total number of containers

that it samples. In other words, p̂ is the empirical fraction of sampled containers in which AQIM

detects a pest. Note that p̂ is a random variable because it depends on random elements, as we will

describe below. Due to random chance, AQIM may calculate a high p̂ in one month, a lower p̂ in

the next month, and so on due to the random pest statuses of the containers that it samples and

the boxes that it inspects from each container.

We assume that AQIM measures the accuracy of its pest probability estimate p̂ in terms of its

mean squared error (MSE) relative to the true pest probability p. The MSE that AQIM seeks to

minimize in its optimization problem can be expressed as E
[
(p̂− p)2

]
. This is the objective function

to be minimized in formulations (1) and (2). In the next section, we will derive an expression for

the MSE as a function of the problem’s variables and parameters.
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Table 3: Nomenclature table

Parameters Description

N Total number of containers arriving per period

b Number of boxes in each container

p0 Probability that a container comes from a pest source

r Probability that a box in a container from a pest source carries a

pest

ρ Correlation between the pest status random variables (0-1) of any

two boxes from the same container (derived parameter)

B Total budget

costc Fixed cost of sampling a container

costb Cost of inspecting a box

Decision Variables Description

n Number of containers to sample per period

i Number of boxes to inspect from each sampled container

The strategy that AQIM chooses is defined by two decision variables that represent the number

of containers that it randomly samples in each period (denoted by n) and the number of boxes

that it randomly inspects from each sampled container (denoted by i). We assume that these two

decision variables are bounded from above by the total number of containers in the subgroup that

arrive at the POE per period (N) and the total number of boxes in each container (b), respectively.

In practice, AQIM has limited resources that constrain how intensively it can randomly sample

arriving cargo and passengers. Therefore, we incorporate a budget constraint with a total budget

of B. The “costs” of sampling a container and inspecting a box are respectively represented as the

costc and costb parameters. As we will demonstrate in our numerical case study, we design the

budget constraint to be quite flexible. For instance, a situation with no fixed cost for sampling a

container can be represented by setting costc = 0 and costb = 1, and measuring the budget B in

units of box inspection capacity. On the other hand, if there is a fixed cost per container and various

monetary cost components, costc, costb, and B can all be represented in dollars.

The first formulation that we use to represent AQIM’s optimization problem is the following,

which we refer to as the Integer Model:
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Model 1: Integer Model

Objective: Minimize E
[
(p̂− p)2

]
(1a)

subject to: n · costc +n · i · costb = B (1b)

0 < n ≤ N (Container constraint for n) (1c)

1 ≤ i ≤ b (Box constraint for i) (1d)

i ∈ Z+, n ∈ R+ (Feasible region for i and n). (1e)

Constraint (1e) requires that the number of boxes inspected from each sampled container be an

integer. This is realistic in that it would be hard to interpret a strategy that involves inspecting

a fraction of a box. On the other hand, we allow n to take on a continuous value so that AQIM

can exhaust all of its budget (i.e., have the budget constraint bind) in order to minimize the MSE.

In practice, AQIM could exhaust whatever budget remains after sampling ⌊n⌋ containers and i

boxes per container by inspecting an “extra” box from a few containers, for example, but we do not

represent this intricacy in our formulations in order to make the problem more tractable.

To enable the formal analysis that we carry out in the next section, we also consider the Con-

tinuous Model (2), which is defined as follows:

Model 2: Continuous Model

Objective: Minimize E
[
(p̂− p)2

]
(2a)

subject to: n · costc +n · i · costb = B (2b)

0 < n ≤ N (Container constraint for n) (2c)

1 ≤ i ≤ b (Box constraint for i) (2d)

i, n ∈ R+ (Feasible region for i and n). (2e)

This Continuous Model is exactly the same as the Integer Model (1), except that it changes the

constraint (1e) to (2e). While (2) is in some sense less “realistic” than (1), it has the advantage of

permitting us to obtain an analytical solution for the optimal AQIM sampling strategy, which we

will derive in Section 5.

Now, we will describe the process by which pests are randomly present in containers and boxes.

The randomness inherent in the pest statuses of the containers and boxes that AQIM inspects is

what makes p̂ a random variable, and based on the probabilistic process of pest arrivals, we will

derive an equivalent expression for the MSE objective function, E
[
(p̂− p)2

]
, in the next section. Our

representation of random pest arrivals allows us to vary the correlation between the pest statuses of

boxes in a container, a parameter that AQIM currently has little information about but that could

exert a strong influence on the optimal sampling strategy.

We assume that each container either comes from a pest source, with probability p0, or does not

come from a pest source, with probability 1 − p0. For example, a pest source could be a farm or
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warehouse where the shipment originated and that is infested with a pest. We assume that whether

one container comes from a pest source is independent of whether any other container comes from a

pest source. Conditional on a container coming from a pest source, each box in the container carries

a pest with probability r. For containers that do not come from a pest source, the probability

that any of its boxes features a pest is zero. We assume that the pest statuses of boxes in the

same container are conditionally independent. To be more specific, given that a container is from a

pest source, the events representing the presence (or absence) of pests in each box are all mutually

independent. Of course, if a container does not come from a pest source, then no box contains a

pest (hence, in this case, the pest events are technically all conditionally independent). However, in

general, box pest statuses can exhibit some (unconditional) dependence. This is because knowing

the pest statuses of some boxes in a container provides useful information about the likelihood that

the container came from a pest source (which affects the probability of any unopened box carrying a

pest). This dependence can be measured by the correlation coefficient (denoted ρ) between the two

random variables that represent the binary pest statuses of any two boxes from the same container.

In the next section, we will derive an expression for ρ in terms of p0 and r.

5 Analysis

5.1 Preliminary Derivations

We begin our analysis by deriving the true probability that a container carries a pest (p), the

distribution of the number of sampled containers in which AQIM detects a pest (a random variable

we denote as R), and the correlation coefficient between the pest statuses of two boxes in the

same container (ρ). These preliminary derivations allow us to write down an expression for the

MSE objective function and interpret parameter settings by referring to ρ, which is somewhat more

intuitive and directly measurable (from AQIM’s point of view) than p0 and r.

The true probability that a container features a pest is

p = p0
(
1− (1− r)b

)
. (3)

Essentially, (3) says that in order to carry a pest, a container must come from a pest source and at

least one of the b boxes in the container must feature a pest.

AQIM calculates its estimate of the container pest probability by dividing the number of sampled

containers in which it detects a pest (R) by the number of containers that it samples (n). Therefore,

according to its definition,

p̂ =
R

n
. (4)

While n is a decision variable that AQIM chooses, R is a random variable. In order to derive the

distribution of R, we first determine an expression for the probability that AQIM detects a pest in

a container that it samples, which we represent as pd. This detection probability can be written as
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pd = p0
(
1− (1− r)i

)
. (5)

The logic underlying (5) is that in order for AQIM to detect a pest in a container, the container

must come from a pest source and at least one of the i boxes that AQIM inspects must feature a

pest. Note that (5) is similar in form to (3), except the former reflects the fact that AQIM chooses

how many boxes to inspect per container (i) and typically this will be less than b.

Given our expression for pd in (5), whether AQIM detects a pest in each one of the n containers

that it samples is essentially an independent coin flip, with probability pd of yielding a pest detection.

Therefore, R follows a binomial distribution, specifically R ∼ Binomial
(
n, p0

(
1− (1− r)i

))
. The

probability mass function of R is thus

P (R = k) =

(
n

k

)
pkd (1− pd)

n−k
. (6)

We now turn our attention to ρ, which denotes the correlation coefficient between the two random

variables (call them X and Y ) that indicate whether two boxes in the same container feature a pest

(value 1 for pest, 0 otherwise). We derive an expression for ρ as a function of p0 and r as follows:

ρ =
Cov(X,Y )√

V ar(X)V ar(Y )

=
E(XY )− E(X)E(Y )

p0r(1− p0r)

=
P (X = 1, Y = 1)− p20r

2

p0r(1− p0r)

=
P (Y = 1|X = 1)P (X = 1)− p20r

2

p0r(1− p0r)

=
p0r

2 − p20r
2

p0r(1− p0r)

=
r(1− p0)

1− p0r
.

(7)

Examining (7), we see that there is a one-to-one correspondence between the values of ρ and r,

given some fixed value of p0. Therefore, setting a value for r in our model is essentially equivalent

to setting the correlation coefficient ρ. In the other direction – which we follow to parameterize

our case study in Section 6 – if AQIM has beliefs about the values of p0 and ρ, then it can use the

relationship in (7) to establish the value of r.

5.2 Derivation of the Mean Squared Error

For the remainder of this section, we analyze the Continuous Model (2) with the assumption that

there is no fixed cost to sample a container (costc = 0) and the budget constraint is specified in

terms of the maximum total number of boxes that can be inspected. In other words, (2b) reduces

to n · i = B. For now this simplifies our analysis, and as we will describe in Section 6, the costc = 0

assumption more or less holds for our Port of Long Beach case study.
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The MSE of the estimated container pest probability p̂ is the objective function to be minimized

in our model. Here, we start with the definition of the MSE and then derive an expression for it in

terms of the decision variables and input parameters, as follows:

E
[
(p̂− p)2

]
= E

[
p̂2 − 2p̂p+ p2

]
=

1

n2
E
(
R2
)
− 2p · 1

n
E(R) + p2

=
1

n

(
p0 − p0 (1− r)

i
)(

1− p0 + p0 (1− r)
i
)
+
(
p0 − p0 (1− r)

i
)2

− 2
(
p0 − p0 (1− r)

b
)(

p0 − p0 (1− r)
i
)
+
(
p0 − p0 (1− r)

b
)2

.

(8)

We can now write (8) as a function of a single variable by using the budget constraint (which holds

with equality) to substitute n = B
i . Denoting the resulting expression for the MSE as f(i) and

letting q = 1− r for shorthand, the MSE is

f(i) =
i

B
p0
(
1− qi

) (
1− p0

(
1− qi

))
+
(
p0
(
1− qi

))2−2p0
(
1− qb

)
p0
(
1− qi

)
+
(
p0
(
1− qb

))2
. (9)

5.3 Approximate Analytical Solution

When we take the derivative of (9) and set it equal to zero to try to find the optimal sampling

strategy (i∗), we obtain

f ′(i) =
ip0q

i ln(q)

B
[2p0(1− qi)− 1] +

p0(1− qi)(1− p0(1− qi))

B
+ 2p20q

i ln(q)
(
qi − qb

)
= 0. (10)

This equation does not have an analytical solution. In order to make it analytically tractable, we

introduce the following approximation for the qi terms in (9) based on the first two terms of the

Taylor expansion:

qi ≈ 1

1 + i · ln 1
q

. (11)

Figure 2 illustrates how the approximate expression in (11) compares to the exact value of qi for

different combinations of q and i values. In general, the plots show that the approximation is fairly

accurate overall, especially when q is low and i is high. In addition, we set qb = 0 in (9). Since b is

often a large value (in the hundreds, or even thousands), qb is essentially 0 for practical computations.

After introducing these substitions, we obtain the following as an approximation to f :

f̂(i) =
i

B
p0

(
1− 1

1 + i · ln 1
q

)(
1− p0

(
1− 1

1 + i · ln 1
q

))
+

(
p0

(
1− 1

1 + i · ln 1
q

))2

− 2p0
(
1− qb

)
p0

(
1− 1

1 + i · ln 1
q

)
+
(
p0
(
1− qb

))2
.

(12)
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(a) q = 0.2 (b) q = 0.8

Figure 2: Comparison between the exact value of qi and the approximate expression in (11).

We then take the derivative of the function in (12) and set it to zero:

f̂ ′(i) =
p0 ln q

(
−2i+ 2Bp0 + i2(−1 + p0) ln q(i ln q − 3)

)
B(1− i ln q)3

= 0. (13)

The solution to (13), î, is a critical point of f̂ :

î =
1

ln q
+

1− 3p0

3
1
3A

− A

3
2
3 (p0 − 1)(ln q)2

where A = ln q · [9(1− p0)
2p0(B ln q − 1)−

√
3(p0 − 1)3(1− 9p0 − 27B(p0 − 1)p20(2−B ln q) ln q)]

1
3 .

(14)

It turns out that î is the only real solution to (13) and hence the only critical point of f̂ . Therefore,

the minimizer of f̂ , in the feasible region, is either 1 (lower bound on i), î, or b (upper bound on

i). In practice, it is of course easy to check which of these values yields the minimum MSE. Then,

this minimum provides an approximately optimal solution to the original continuous optimization

problem in (2). In Section 7.3 we will provide a computational analysis of the accuracy of the

Continuous Model (with and without the approximations introduced in this section) relative to the

Integer Model.

In situations where AQIM believes that the approximations introduced in this section are valid,

(14) provides a direct mapping from the values of the input parameters B, p0, and r (captured

in q = 1 − r) to the optimal number of boxes to inspect from each sampled container. Then, the

optimal number of containers to sample is determined via the budget constraint as n∗ = B
î
.

6 Case Study: Port of Long Beach

To obtain additional insights from our model and to demonstrate its applicability to AQIM’s real-

world operations, we parameterize a numerical case study of maritime cargo sampled at the Port of

Long Beach. The Port of Long Beach, located in the Los Angeles metropolitan area in California,
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is one of the 25 busiest container cargo ports in the world (Port of Long Beach, 2023). Together

with the neighboring Port of Los Angeles, the combined port complex ranks ninth in the world. The

Port of Long Beach alone handles one out of every five containers that move through U.S. ports.

Containers arriving at the Port of Long Beach represent cargo valued at $200 billion annually.

Roughly 90% of the trade passing through the Port of Long Beach is between the U.S. and East

Asia, with China, Vietnam, Thailand, South Korea, and Taiwan the top five trading partners (Port

of Long Beach, 2023). Given its prominence in U.S. maritime cargo imports and exports, the Port

of Long Beach is an ideal case study to focus on with our model.

To help us assign values to our model’s input parameters, AQIM management provided us with

all AQIM inspection data collected during the calendar year 2022 at the Port of Long Beach. Each

data entry describes one maritime cargo container that AQIM randomly sampled at the port. For

each sampled container, the data include information such as the vessel name, country of origin,

commodity, number of boxes/units in the container, number of boxes/units inspected (based on the

hypergeometric table), and whether an actionable pest was detected.

To further improve our understanding of AQIM operations at the Port of Long Beach, we con-

ducted a site visit to the port (along with air cargo at Los Angeles International Airport) in August

2023. During this site visit, we had informative discussions with the local AQIM Coordinator, CBP

officers who supervise agriculture activities, and agriculture specialists who inspect cargo for AQIM

and enter the inspection data. We also observed several real and mock AQIM inspections that

included the selection of boxes to inspect, the inspection of their contents, and data entry.

Using the data provided by AQIM and drawing on the knowledge gained during our site visit,

we established the Port of Long Beach case study parameterization summarized in Table 5. In the

paragraphs below, we elaborate on how we chose each of the parameter values. It is important to

emphasize that our model entails some necessary simplifications and abstractions relative to real-

world AQIM operations at the Port of Long Beach, and that the values of some parameters are

difficult to pinpoint. Therefore, we will present results for sensitivity analyses on several parameters

in Section 7.

Table 5: Parameter settings for the Port of Long Beach case study.

Parameter Description Value

costc Fixed cost of sampling a container 0

costb Cost of inspecting a box 1

B Budget 232

b Number of boxes in each container 1500

p0 Probability that a container comes from a pest source 0.025

r Probability that any box in a container from a “pest

source” contains a pest

0.306

ρ Correlation coefficient between any two boxes in one

infected container

0.3
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We set the costc parameter to zero because we learned during our site visit that AQIM does not

directly incur the cost of transporting a sampled container to the inspection warehouse, unloading

all of its contents, and staging the boxes for inspection. In practice, a contracted logistics company

performs these tasks and charges fees for its services to the consignee receiving the container ship-

ment. In other words, the fixed cost of sampling a container is passed on to the importer as part

of the cost of doing business and bringing their goods through U.S. customs. While sampling more

containers has a downside in terms of AQIM’s qualitative imperative of facilitating trade, it does

not require AQIM to directly commit any resources. Even though we let costc = 0 in our reference

case study parameterization, we conduct a sensitivity analysis to explore how incorporating a fixed

cost per container changes the optimal sampling strategy.

Since costc = 0, we can simplify the budget constraint by setting costb = 1 and quantifying

the budget B in units of boxes per month. Currently, the AQIM sampling protocol calls for eight

containers to be sampled per month at the Port of Long Beach. Our site visit revealed that AQIM

personnel inspect 29 boxes from the vast majority of containers that they sample, since they are

large enough to correspond to the last row of the hypergeometric table (see Table 1). Therefore,

we set B = 8 · 29 = 232 to reflect the current availability of resources for AQIM sampling. By

calibrating our budget constraint to match the current commitment of AQIM resources each month,

our case study allows us to investigate whether AQIM could achieve better probability estimates

without increasing its capacity to inspect boxes.

In reality, the number of boxes varies from one container to another, but one simplification that

our model makes is to assume that all containers carry b boxes. Our empirical AQIM data from

the Port of Long Beach includes the number of boxes in each sampled container. The mean value

is roughly 1500 boxes per container, so we adopt this value for b. Note that, when calculating this

mean, we only considered data entries where the unit used to measure the container’s contents was

“box/cartons” and not some other unit, such as “kilograms” for loose cargo.

In the empirical AQIM data from the Port of Long Beach, the fraction of all containers sampled

in 2022 in which an actionable pest was detected is approximately 0.02. The way that we model

random pest arrivals, in order to carry a pest, a container must come from a pest source. The

reverse, however, is not necessarily true. A container from a pest source may not actually feature a

pest, which happens if the “coin flips” that determine the pest statuses of individual boxes all yield

no pest. Therefore, we set the probability that a container comes from a pest source at p0 = 0.025 to

be similar to, but slightly higher than, the empirical fraction of sampled containers in which AQIM

detected a pest.

Recall from (7) that, given a fixed p0, there is a one-to-one correspondence between values of

r and ρ. So, we need only to assign a value to one of these parameters, and then the value of the

other is fully determined by (7). We choose to first establish ρ, which is the correlation coefficient

between the two random variables indicating whether two boxes in the same container feature pests.

AQIM does not calculate ρ or collect the data necessary to estimate it empirically because it only

records pest inspection outcomes at the container level, not at the box level. However, during

our site visit, AQIM personnel suggested that there often appears to be some positive correlation,

since with certain commodities, inspecting only a few boxes is sufficient to assess whether a pest
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is pervasive throughout the container or not. Based on their descriptions, we set ρ = 0.3 in our

reference case study parameterization, but we vary its value in a sensitivity analysis to examine how

the correlation affects the optimal sampling strategy. With p0 = 0.025 and ρ = 0.3, (7) requires that

we set r = 0.306.

7 Numerical Results

In this section, we mainly present and discuss numerical results obtained for our Port of Long

Beach case study. Beyond merely reporting the optimal sampling strategy for our reference case

study parameterization described in Section 6, we focus on scenario and sensitivity analyses that

allow us to explore how the correlation coefficient (ρ) and the fixed cost per container (costc) affect

the optimal strategy and its performance. Unless otherwise noted, the results that we report are

determined using the Integer Model (1) in which i is restricted to be an integer. Toward the end

of this section, we briefly compare the numerical solutions of the Integer Model to those of the

Continuous Model with and without the approximations introduced for the analysis in Section 5.

7.1 Case Study Results: Scenario Analysis

Table 7 displays results obtained for five parameter settings that are all based on the reference

parameterization from Table 5, but with different values of the correlation coefficient ρ (and, by

extension, r). For all of the cases shown in Table 7, it is assumed that there is no fixed cost for

sampling a container (costc = 0). Note that Case 3 is our reference parameterization with its

assumption that ρ = 0.3. Case 1 represents the special case in which the box pest events are

independent. In particular, for ρ = 0, we assume that the presence of a pest in a specific box is

independent of the pest statuses of other boxes. In this case, equation (7) does not apply. Rather,

we model this special “independent” case within the structure of our model by setting p0 = 1 and

interpreting r as the probability that any box features a pest. Then, the true probability that a

container features a pest is given by p = 1−(1−r)b. For Case 1 we thus calculate r by assuming that

p = 0.02 and b = 1500. Case 2 assumes a weak (but non-zero) correlation. Cases 4 and 5 assume

stronger correlations. For each case, Table 7 reports the current AQIM protocol (essentially just the

strategy defined in the AQIM Handbook) and its associated MSE, our model’s optimal sampling

protocol and the MSE that it achieves, and the percentage reduction in MSE achieved by following

the optimal strategy instead of the current AQIM protocol.
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Table 7: Case study results for the reference parameterization and different values of ρ.

Case# Parameters AQIM Protocol Optimal Protocol Improve%

ρ r n i MSE n∗ i∗ MSE

1 ρ = 0 r = 1.34× 10−5 n = 8 i = 29 0.00044 n∗ = 46.4 i∗ = 5 0.00039 9.96%

2 ρ = 0.02 r = 0.0205 n = 8 i = 29 0.0015 n∗ = 46.4 i∗ = 5 0.0005 64.08%

3 ρ = 0.3 r = 0.305 n = 8 i = 29 0.033 n∗ = 116 i∗ = 2 0.0002 99.28%

4 ρ = 0.5 r = 0.506 n = 8 i = 29 0.083 n∗ = 116 i∗ = 2 0.0002 99.76%

5 ρ = 0.8 r = 0.804 n = 8 i = 29 0.189 n∗ = 232 i∗ = 1 0.0001 99.94%

We make several important observations based on the results in Table 7. In all five cases, the

optimal sampling strategy samples many more containers – but inspects fewer boxes per container

– than the current AQIM sampling protocol. The ability for AQIM to estimate container pest

probabilities more accurately by moving its sampling strategy in this direction from current practices

thus appears to be robust to the particular value of ρ. The difference between the current protocol

and the optimal strategy grows with ρ. This behavior is logical when considering the extreme case of

ρ = 1, where the optimal strategy would intuitively be to set i = 1 (because observing whether one

box has a pest reveals with certainty whether all boxes in the container do or do not have a pest)

and sample as many containers as the budget allows. The percentage improvement in the MSE of

the container pest probability estimate is also larger when ρ is higher. In the independent case with

ρ = 0, the optimal protocol is only 6.11% more accurate than the current one. However, even a

weak correlation of ρ = 0.02 is sufficient to make the optimal protocol achieve a 64.08% lower MSE

than the current strategy. At the reference ρ value of 0.3 and above, our model’s optimal strategy

reduces the MSE by more than 99%.

Clearly, it would be helpful for AQIM to measure ρ by collecting box-level (as opposed to just

container-level) inspection data in order to determine the best sampling strategy. But simply know-

ing that ρ > 0, which our intuition and our conversations with AQIM personnel certainly suggest,

provides a strong justification for sampling more containers but fewer boxes per container in order

to significantly improve probability estimates. In essence, knowing that the pest statuses of boxes

in the same container are positively correlated means that an inspector does not need to inspect

very many pest-free boxes in order to be fairly confident that the container does not feature a pest.

Additional inspection time and effort can then be allocated to sampling additional containers.
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Table 8: Case study results for the reference parameterization, but with costc = 3, and different
values of ρ.

Case# Parameters AQIM Protocol Optimal Protocol Improve%

ρ r n i MSE n∗ i∗ MSE

1 ρ = 0 r = 1.34× 10−5 n = 8 i = 29 0.00044 n∗ = 36.57 i∗ = 4 0.00040 9.91%

2 ρ = 0.02 r = 0.0205 n = 8 i = 29 0.0016 n∗ = 36.57 i∗ = 4 0.0006 62.68%

3 ρ = 0.3 r = 0.305 n = 8 i = 29 0.035 n∗ = 51.2 i∗ = 2 0.0004 98.85%

4 ρ = 0.5 r = 0.506 n = 8 i = 29 0.083 n∗ = 64 i∗ = 1 0.0003 99.60%

5 ρ = 0.8 r = 0.804 n = 8 i = 29 0.175 n∗ = 64 i∗ = 1 0.0003 99.80%

Table 8 is analogous to Table 7, but for cases with a fixed cost per container of costc = 3

instead of zero as in the reference parameterization. While we explained our justification for setting

costc = 0 for the reference parameter setting in Section 6, it is still worthwhile to investigate the

impact of incorporating a positive fixed cost for sampling a container. There may be a small fixed

cost at present for the time that the inspector requires to enter the inspection results, done once for

each container. Furthermore, given AQIM’s desire to minimize disrupting trade, it could choose to

internalize the logistics costs of transporting, unloading, and staging each container for inspection,

even though it does not incur these costs directly. Lastly, our model is general enough to apply to

other sampling processes beyond our AQIM application, and other applications could entail fixed

costs.

The patterns in Table 8 are more or less the same as those seen in Table 7 as far as the effects of

the correlation coefficient ρ on the optimal sampling protocol and its improvement in the MSE. Once

again, we find that it is optimal to sample more containers but inspect fewer boxes per container than

in the current protocol, and that the difference between the current and optimal sampling strategies,

and the difference in their MSEs, are larger when ρ is higher. Unsurprisingly, incorporating a fixed

cost for sampling a container leads to optimal solutions with lower n∗ and higher i∗ values than

in the corresponding cases without a fixed cost. However, even with the fixed cost included, our

model indicates that the optimal sampling strategy involves sampling considerably more containers

than the current AQIM approach. Therefore, the evidence for concluding that better probability

estimates could be achieved by moving the sampling approach in this direction is quite strong.

7.2 Case Study Results: Sensitivity Analysis

In this subsection we continue to explore how the correlation coefficient (ρ) and fixed cost per con-

tainer (costc) influence the optimal sampling strategy and its MSE. We conduct sensitivity analyses

that consider a broader range of parameter values than those included in the cases in the previous

subsection, and allow us to visualize the impacts of these parameters. Unless otherwise noted, all

parameters are assumed to take on their reference values from Table 5.
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Figure 3 visually depicts how the optimal n∗ (blue bars, left y-axis) and i∗ (red bars, right y-axis)

vary with ρ when all other parameters are held at their reference values. Consistent with what we

observed for the scenarios in the previous subsection, as ρ increases, n∗ increases and i∗ decreases.

At correlation coefficients of ρ = 0.6 and above, it is optimal to inspect only one box per container.

In other words, when box pest statuses are correlated this strongly, it is best to make the container

sample size as large as possible and determine the pest status of each container based entirely on

inspecting one box from the container.

Figure 3: Optimal sampling strategy for the reference parameterization but with varying values of
ρ.

Table 9 reports the MSEs of the container pest probability estimates obtained via the current

AQIM protocol and our model’s optimal sampling protocol. It also reports the ratio of the former

to the latter. Once again, we see that the accuracy improvement that can be gained by switching

from the current to the optimal sampling strategy is small when ρ = 0 but quickly increases with ρ.

Even with a weak correlation of ρ = 0.1 the optimal strategy reduces the MSE by 95% compared

to current practices. When ρ = 0.3 and greater, the improvement is above 99%. The stronger the

correlation between box pest statuses, the more this information can be leveraged to inspect fewer

boxes per container without sacrificing much container-level confidence, which means that more
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containers can be sampled.

Table 9: Comparing the MSEs achieved by the current AQIM protocol and the optimal protocol,
and their ratio (AQIM MSE/Optimal MSE), for the reference parameterization with varying

values of ρ.

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AQIM MSE 0.00044 0.0078 0.0178 0.033 0.0572 0.083 0.112 0.145 0.179 0.219

Optimal MSE 0.00039 0.0004 0.0003 0.00026 0.0002 0.00019 0.00016 0.00013 0.0001 0.000097

Ratio 0.88 0.051 0.017 0.0079 0.0035 0.0023 0.0014 0.0009 0.00056 0.0004

Next, we investigate the sensitivity of our results to variation in the fixed cost of sampling a

container (costc). Holding all other parameter values fixed at their reference settings (including

ρ = 0.3), Figure 4 illustrates how n∗ and i∗ change as costc increases from 0 to 9.

Figure 4: Optimal sampling strategy for the reference parameterization but with varying values of
costc.

Intuitively, we see in Figure 4 that increasing the value of costc makes the optimal solution sample
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fewer containers. A higher value of costc makes it relatively more costly to sample a container than

to inspect a box, which causes the optimal sampling strategy to shift to sampling fewer containers.

However, it is crucial to point out that even with costc = 9 (i.e., sampling a container requires nine

times the resources of inspecting a box), the optimal protocol still samples more containers than the

current AQIM approach. Therefore, our finding that AQIM should sample more containers than it

currently does in order to improve its probability estimates appears robust to incorporating a fairly

large fixed cost per container.

What is less intuitive about the results in Figure 4 is that, when costc increases, i∗ either stays

the same or decreases. Instead of moving in the opposite direction of n∗, which decreases with costc,

to reflect the tradeoff between the two strategy levers, i∗ moves in the same direction as n∗, if at

all. This seemingly counterintuitive behavior can be understood by interpreting it in terms of the

substitution effect and income effect from economics. The substitution effect based on the relative

costs of sampling a container versus inspecting a box tends to decrease n∗ and increase i∗ as costc

increases. The income effect based on the real purchasing power of the budget B tends to decrease

both n∗ and i∗ as costc increases, since the latter effectively makes a fixed budget worth less in real

terms. From Figure 4 we can see that the income effect evidently outweighs the substitution effect,

resulting in i∗ either remaining constant or declining with costc.

Table 10: Comparing the MSEs achieved by the current AQIM protocol and the optimal protocol,
and their ratio (AQIM MSE/Optimal MSE), for the reference parameterization with varying

values of costc.

costc 0 1 2 3 4 5 6 7 8 9

AQIM MSE 0.033 0.034 0.035 0.035 0.034 0.036 0.034 0.039 0.035 0.037

Optimal MSE 0.0002 0.0003 0.0003 0.0004 0.00041 0.00047 0.00050 0.00050 0.00054 0.00055

Ratio 0.006 0.009 0.008 0.011 0.012 0.013 0.014 0.012 0.015 0.013

Table 10 reports the MSEs associated with the current AQIM protocol and our model’s optimal

sampling strategy for different values of costc, with all other parameter settings held fixed at their

reference values. Once again, we find that switching from the current approach to the optimal sam-

pling protocol would lead to a significant reduction in the MSE in all cases. However, in contrast to

what we observed for the correlation coefficient, the value of the fixed cost per container does not

exert a qualitatively strong influence on the optimal strategy’s MSE or on the percentage improve-

ment between the current AQIM and optimal MSEs. Therefore, the ability of AQIM to improve its

container pest probability estimates by implementing the optimal strategy, or at least moving in the

direction of sampling more containers, seems quite robust to incorporating a container fixed cost.

7.3 Solutions Comparison

All of the Port of Long Beach case study results that we have presented up to this point were

obtained using our Integer Model (1) of the problem. As we discussed in Section 4, this is in some
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sense the most realistic formulation because it restricts i to be an integer. For our case study,

obtaining optimal solutions to the Integer Model was not computationally difficult, so its solutions

are the ones that we focused on. However, to enable us to derive analytical insights in Section 5, we

also considered the Continuous Model formulation (2), as well as a further simplified version of the

Continuous Model with the approximations introduced in Section 5. Here, we briefly conclude this

section on numerical results by comparing the optimal solutions obtained from the Integer Model,

the Continuous Model, and the Continuous Model with approximations.

Table 11 reports the optimal i∗ value for these three different solutions for four of the cases with

different ρ values that were earlier included in Table 7. Before even comparing the particular values

of i∗ determined for each version of the formulation, it is important to note that all three solutions

yield i∗ values that are considerably lower than the current AQIM protocol’s i value of 29, for all four

cases. So, our finding that the optimal strategy samples more containers but inspects fewer boxes

per container than the current AQIM approach holds regardless of which formulation is adopted.

Comparing the solutions, the Continuous Model and Continuous Model with approximations i∗

values are always within 0.5 units of the Integer Model i∗ value, so that rounding their solutions

would yield matches with the Integer Model solutions. The Continuous Model with approximations

always produces an i∗ value that is higher than that of the Integer Model; there is no such obvious

trend for the Continuous Model i∗ values. All in all, the optimal solutions obtained using the three

subtly different formulations are close enough that the choice of formulation would be unlikely to

affect any of the qualitatively important findings (both theoretical and numerical) that we have

uncovered.

Table 11: Comparison of three different solutions for the reference parameterization and varying
values of ρ.

Case # Parameters
Integer Model i∗ Continuous Model i∗

Continuous Model

with approximations i∗ρ r

1 0.02 0.0205 5 5.1 5.01

2 0.3 0.305 2 2.15 2.27

3 0.5 0.506 2 1.50 1.69

4 0.8 0.804 1 1 1.11

8 Conclusions

In this study, we formulated an optimization model to minimize the MSE of the container-level

pest probability estimates calculated by the Agricultural Quarantine Inspection Monitoring (AQIM)

program in the U.S. With limited resources, AQIM faces a tradeoff between sampling more containers

but inspecting fewer boxes per container, or sampling fewer containers but inspecting more boxes

per container. This is the central strategy decision that our model captures. We first conducted

a theoretical analysis of the problem by introducing several approximations to aid tractability and

deriving an analytical expression for the optimal sampling strategy. Then, we parameterized a

numerical case study of sampling maritime cargo at the Port of Long Beach, with parameter values
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based on empirical AQIM data and a site visit. We presented and discussed case study results to

investigate how critical parameters affect the optimal sampling strategy, how the optimal approach

differs from the current AQIM protocol, and how much accuracy can be gained by shifting from

current practices to the optimal approach. While our model is motivated by the AQIM application

and we base our numerical case study on it, we emphasize that our model and insights could

apply more generally to other probability estimation applications with two levels analogous to our

containers and boxes.

Our main findings can be succinctly summarized as follows:

1. The optimal sampling strategies derived from our model tend to sample more containers, but

inspect fewer boxes per sampled container, than the current AQIM protocol. This difference

is quite robust to variations in parameter settings.

2. The optimal sampling strategies typically produce probability estimates with substantially

lower MSEs than the current AQIM protocol.

3. The differences between the optimal sampling strategy and the current AQIM protocol, in

terms of strategy and performance, are greater when the correlation between the pest statuses

of boxes in the same container is higher.

Practically, we understand that it may not be possible for AQIM to implement the exact optimal

sampling strategies recommended by our model. The values of the input parameters are uncertain,

changing over time, and different from one POE and pathway to another. Some of our simplifying

assumptions are departures from reality, such as the homogeneity of containers in terms of their

number of boxes. Furthermore, AQIM might determine that increasing the number of containers

that it samples to the full extent suggested by our results would conflict too much with its imperative

to facilitate trade. However, despite these caveats, we strongly recommend that AQIM move in the

direction of sampling more containers in order to achieve more accurate pest probability estimates,

even if it comes at the expense of inspecting fewer boxes per container due to resource limitations.

We certainly feel confident that the sampling strategy ought to shift in this direction.

Another practical recommendation that we offer AQIM based on our findings is that the program

could gain a lot of valuable information, for relatively little effort, by recording pest inspection results

at the box level instead of only doing so at the container level. This would merely require inspectors

to enter whether each box has an actionable pest, yes or no. Using this data, AQIM could calculate

the correlation coefficient ρ. As our analysis has shown, knowing ρ would go a long way toward

helping AQIM optimize its sampling procedures and advocate for their implementation, given that

stronger correlations make the probability estimation accuracy improvement larger.

Looking ahead, we see two future research directions as particularly fruitful. First, a natural

extension of this study would be to optimize the allocation of inspection resources among multiple

pest importation pathways instead of only one. From one common budget, the decision-maker must

sample containers and inspect boxes from multiple pathways with different parameter values (e.g.,

probabilities that a container comes from a pest source, correlations between box pest statuses, etc.)

with the goal of minimizing an aggregate error metric. This extension could help AQIM concentrate
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resources more or less heavily depending on the pathway, and update resource allocations as new

data are collected. Second, we recognize that it is not necessarily sensible from a risk mitigation

standpoint to estimate all probabilities equally accurately. For instance, to aid downstream AQI

decision-making, it could be more helpful to estimate the container pest probability for pathways

that have had the greatest pest risk in the past, that serve as conduits for particularly problematic

pests, and so on. Therefore, it would be valuable to link a model of probability estimation to the

downstream model for risk mitigation in order to gain insights into which probabilities are most

important to assess accurately (and thus devote ample resources to estimating).
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